Normal view MARC view ISBD view

Production Trends in Mature Macadamia Orchards and the Effects of Selective Limb Removal, Side-hedging, and Topping on Yield, Nut Characteristics, Tree Size, and Economics /

by Lisa McFadyen; Margaret Sedgley; Trevor Olesen; David Robertson; Paul Kristiansen; New South Wales Department of Primary Industries, Wollongbar Primary Industries Institute, 1243 Bruxner Highway, Wollongbar, NSW 2477, Australia; Faculty of Arts and Sciences, The University of New England, Armidale, NSW 2351, Australia.
Material type: materialTypeLabelComputer fileSeries: HortTechnology.Publisher: American Society for Horticultural Science, 2013Description: Journal article.ISSN: 1943-7714.Online resources: Link to original article. In: HortTechnology (Vol.) 23. (No.) 1. 2013. (Pages.) 64-73.Summary: Yields of macadamia (Macadamia integrifolia, M. tetraphylla, and hybrids) orchards tend to increase with increasing tree size up to ≈94% light interception. Beyond this, there is some indication that crowding leads to yield decline, but the evidence is limited to one site. Increasing tree size and orchard crowding also present numerous management problems, including soil erosion, harvest delays, and increased pest and disease pressure. The aim of this study was to better characterize long-term yield trends in mature orchards and to assess the effects of manual and mechanical pruning strategies on yield, nut characteristics, tree size, and economics. We monitored yield at four sites in mature ‘344’ and ‘246’ orchards for up to seven years and confirmed a decline in yield with crowding for three of the sites. There was a small increase in yield over time at the fourth site, which may reflect the lower initial level of crowding and shorter monitoring period compared with the other sites, and highlights the need for long-term records to establish yield trends. Pruning to remove several large limbs from ‘246’ trees to improve light penetration into the canopy increased yield relative to control trees but the effect was short-lived and not cost-effective. Removal of a codominant leader from ‘344’ trees reduced yield by 21%. Annual side-hedging of ‘246’ trees reduced yield by 12% and mechanical topping of ‘344’ trees caused a substantial reduction in yield of up to 50%. Removal of limbs in the upper canopy to reduce the height of ‘344’ trees had less effect on yield than topping but re-pruning was not practical because of the extensive regrowth around the pruning cuts. Tree size control is necessary for efficient orchard management, but in this study, pruning strategies that controlled tree size also reduced yield. Research into the physiological response to pruning in macadamia is required to improve outcomes.
Tags from this library: No tags from this library for this title.
No physical items for this record

Yields of macadamia (Macadamia integrifolia, M. tetraphylla, and hybrids) orchards tend to increase with increasing tree size up to ≈94% light interception. Beyond this, there is some indication that crowding leads to yield decline, but the evidence is limited to one site. Increasing tree size and orchard crowding also present numerous management problems, including soil erosion, harvest delays, and increased pest and disease pressure. The aim of this study was to better characterize long-term yield trends in mature orchards and to assess the effects of manual and mechanical pruning strategies on yield, nut characteristics, tree size, and economics. We monitored yield at four sites in mature ‘344’ and ‘246’ orchards for up to seven years and confirmed a decline in yield with crowding for three of the sites. There was a small increase in yield over time at the fourth site, which may reflect the lower initial level of crowding and shorter monitoring period compared with the other sites, and highlights the need for long-term records to establish yield trends. Pruning to remove several large limbs from ‘246’ trees to improve light penetration into the canopy increased yield relative to control trees but the effect was short-lived and not cost-effective. Removal of a codominant leader from ‘344’ trees reduced yield by 21%. Annual side-hedging of ‘246’ trees reduced yield by 12% and mechanical topping of ‘344’ trees caused a substantial reduction in yield of up to 50%. Removal of limbs in the upper canopy to reduce the height of ‘344’ trees had less effect on yield than topping but re-pruning was not practical because of the extensive regrowth around the pruning cuts. Tree size control is necessary for efficient orchard management, but in this study, pruning strategies that controlled tree size also reduced yield. Research into the physiological response to pruning in macadamia is required to improve outcomes.

There are no comments for this item.

Log in to your account to post a comment.